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Abstract

English.
Known physics is described by a theory (the standard model), that

concerns the behaviour of many fields. For coherence with quantum
mechanics, the classical theory of these fields is replaced by one, that
takes into account their particle nature. One puts the problems to
unify the fields of the standard model, and to find a satisfactory theory
of gravitation, which the standard methods have many difficulties to
quantize. Seemingly, string theory solves both these problems, but it
also is not free from serious complications, which are intrinsic to field
quantization.

Italiano.
La fisica finora nota è descritta da una teoria (modello standard),

che si occupa del comportamento di numerosi campi. Per coerenza
con la meccanica quantistica, la teoria classica di questi campi viene
sostituita da una, che tiene conto della loro natura corpuscolare. Si
pongono i problemi di unificare i campi del modello standard, e di tro-
vare una teoria soddisfacente della gravitazione, che i metodi usuali
hanno difficoltà a quantizzare. Apparentemente, la teoria delle strin-
ghe risolve entrambi questi problemi, ma anch’essa non è immune da
serie complicazioni, intrinseche alla quantizzazione dei campi.

∗http://pfabbri.interfree.it/string en.pdf
†http://pfabbri.interfree.it/string.pdf
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1 The standard model

Till now known physics is very well represented by a theory, named the
standard model [5] [1] [2] [3] [11], which describes the behaviour and the in-
teractions of a certain number of fields: gravitational, electroweak of isospin,
electroweak of hypercharge, gluonic, nine leptonic fields, nine quark fields,
and one Higgs field. For the application to cosmology, one perhaps needs to
add others of them, associated to inflatons and to dark matter.

Almost all of these fields possess several components, which are turned,
one into the other, by some transformations which are symmetries of the
theory, that is which leave it unchanged. This is analogous to the compo-
nents of a vector, which are transformed one into the other, by a rotation
of the reference system, which is a symmetry of all physical laws (“isotropy”
of space). As space is isotropic, rotating the vector also, rather than the
reference system, changes its components, but does not its properties. One
cannot say the vector, oriented along a different direction, is another entity.
It is always the same, observed from another point of view.

In the same way, different components, of one single field, may look like
different fields, but they are the same entity. This is what happens to electric
and magnetic fields in the electromagnetic one, to electromagnetic and weak
fields in the electroweak ones, to fields associated to neutrinos and to their
leptons in the left-handed leptonic field. One then sees that symmetries
can be used to unify fields. But, in order that entities, which are in reality
the same, may appear different, one needs a mechanism that “breaks” the
symmetry. In the case of electric and magnetic fields it is constituted by low
ordinary velocities, which hide the phenomena of electromagnetic induction.
In the case of electroweak symmetry breaking, it is the fact that, when energy
becomes sufficiently small, the Higgs field is forced to choose to assume, in
the vacuum, one certain value. The possible values respect, on their whole,
the symmetries, but when, randomly, one of them is selected, the theory is
not, apparently, symmetric any more.

2



Symmetries also provide us with a natural way to generate interactions.
Let us consider special relativity. It may be thought of as the symmetry,
of physical laws, under Lorentz transformations. The latter are rotations,
in space-time, by an angle that is the same everywhere. Therefore they are
called “global” transformations. If we believe in the principle of relativity,
limiting it to “inertial” systems seems to be insufficient. Therefore, we are
induced to postulate the invariance, of physical laws, under any coordinate
transformation, that is under rotations and translations, the parameters of
which vary, in an arbitrary way, from a space-time point to another. There-
fore they are called “local” transformations. As soon as the relativity princi-
ple, from special, becomes general, an interaction rises: gravity. In the same
way, when any symmetry, from global, is promoted to local, interactions are
generated. It is what happens for most of the interactions of the standard
model.

The theories, that take advantage of this mechanism, are said “of gauge”,
because making a local symmetry transformation corresponds to change the
gauge one is working in. In all these theories, as for the vector potential in
electromagnetism, variables are redundant in respect of the physical situation
one wishes to describe. Electromagnetism is a gauge theory too (perhaps the
simplest).

The local (or “gauge”) symmetries of the standard model are: that under
changes of coordinates (or “diffeomorphisms”), and three called, for technical
reasons, U(1), SU(2), SU(3). The corresponding interactions, or forces,
are, respectively, the gravitational one, the hypercharge electroweak one,
the isospin electroweak one, and the strong one. The fields (“gauge” fields)
mediating such forces are the gravitational field, the hypercharge electroweak
one, the isospin electroweak one, and the gluonic one. The leptonic fields,
the quark ones and the Higgs one are also transformed by all or part of the
symmetry transformations, and undergo the corresponding forces. However,
in the standard sense, they are not the mediators of such forces. The Higgs
field also interacts with the leptonic and the quark ones, by forces non-
derivable from a symmetry principle.

For coherence with quantum mechanics, one needs to replace the classical
theory of the fields (waves) we have cited, with something that takes into
account their particle nature.

2 Field quantization

The classical theory of a field provides us with some partial differential equa-
tions for it (“equations of motion”). They allow us to determine its time
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evolution, and the eventual constraints that initial conditions must satisfy.
To quantize such a theory, the most direct idea [4] . . . [15], Appendix A

of [36] is to try to derive these equations from a least action principle, with a
Lagrangian functional of fields and of their time derivatives, and to deduce,
from it, a Hamiltonian, functional of fields and of momenta conjugated to
them. Translating fields into multiplicative operators, and momenta into
functional derivatives in respect of fields, one then obtains a Hamiltonian
operator, which can act on a wave functional to determine its time evolution.

In the practice, it is convenient to expand fields and their conjugated
momenta into Fourier integral, and, from their commutation relations, to
deduce those for Fourier coefficients. Thus, they result to be raising and low-
ering operators, which can be thought of as creators or destroyers of particles
(quanta of the field). The corpuscular interpretation of the field, characteris-
tic of quantum mechanics, is thus recovered. The free (or deprived of terms
representing interactions) Hamiltonian is in agreement with de Broglie rela-
tion for energy, and, if one computes the quantity of motion associated to
the field, it also corresponds to the other de Broglie relation.

Substituting, to fields and momenta, their Fourier expansion, in the
Hamiltonian (complete of the interaction terms), one then obtains an opera-
tor built with creators and annihilators, which, acting on the state vector of
the system, creates new particles, destroys some old ones, or simply changes
their quantity of motion, all of this with definite probability amplitudes. The
quantum evolution of the system is in this variation of the number, the type
and the quantity of motion of particles.

All of this is valid in line of thought, but, putting it into practice, one
must face very serious obstacles [16]:

1. In the majority of theories of practical interest, in particular in gauge
theories, the Lagrangian does not contain the time derivative of some
fields. This implies that momenta conjugate to such fields are zero.
From one point of view, this impedes to satisfy the canonical commu-
tation rule between such momenta and the fields conjugate to them,
from the other, it makes the Hamiltonian ill-defined, because it is not
possible to invert the expression of momenta, in order to extract the
time derivatives of fields and to insert them into the Hamiltonian. By
other ways also, one is not usually able to write a Hamiltonian, from
which Hamilton equations fully coherent with the Lagrangian ones re-
sult.

2. At the moment of translating the classical Hamiltonian into a quantum
operator, there is ambiguity in the choice of factor ordering in the
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various terms, because it is possible that the quantum operators do
not commute.

In principle, this problem is very grave [17], because any operator
F (q, p), with p momentum conjugate to q, can be rewritten

F (q, p)− i

h̄
(qp− qp)G(q, p), (1)

with G(q, p) arbitrary operator. Changing the factor ordering, (1) be-
comes

F (q, p)− i

h̄
(qp− pq)G(q, p) = F (q, p) + G(q, p), (2)

and differs from F (q, p) by an arbitrary operator. It is then possible to
transform an operator into any other, only changing the factor ordering.

The requests that the term we are writing has the right symmetries,
the correct classical limit and is hermitian, unitedly to the Occam razor
(the philosophical principle, according to which, one must look for the
simplest explanation of phenomena), permit to reduce the possibilities.
However, they do not usually suffice to solve the problem.

In the “path integral” approach, this ambiguity is replaced by that on
the choice of the measure of the integral itself.

3. The transition amplitudes, from a state to another, computed at the
perturbative order lowest in the parameters of the theory that regulate
interactions (“coupling” constants), give easily interpretable results.
But subsequent corrections yield, besides true amplitude corrections,
corrections to effective values of parameters (electric charges, masses,
. . . ). These latter corrections are usually infinite. To have the finite
value, experimentally observed, one then needs to suppose that the
true (“bare”) values, of parameters, are also infinite and opposite to
corrections, so as to compensate them and to leave a finite difference
(“renormalization”). These differences are fixed by the experimental
values.

Unfortunately, even terms, with their infinite multiplicative constant,
absent from the original Lagrangian, may rise as corrections. For them,
we do not know what value the experimentally observable parameter
must have. Its presence is a point the theory leaves undetermined.
The greater the number of such points is, the less the predictive power
of the theory itself is, and the less it is attracting as a fundamental
theory (because vitiated by many arbitrary choices). In some cases,
the number of parameters, that remain undetermined, can even be
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infinite. In this case, one, perhaps improperly, says the theory is not
renormalizable.

4. The infinite values of parameters, which require renormalization, orig-
inate from integrals, over the quantities of motion of particles, which
diverge in the great quantity of motion region. To effect renormaliza-
tion one previously needs to make such integrals finite, cutting off their
upper extreme in some way. At the ending of the process, such cut-
off will be removed, giving back the original theory. The method, by
which one makes these integrals finite, is called “regularization”. Var-
ious possible types of regularization exist, and, seemingly, the choice
of a regulator, rather than another, also influences the results of the
theory.

5. There is no certainty that symmetries, present in the classical theory,
are preserved passing to the quantum one, and some of them, as the
Lorentz one or the gauge ones, represent physical principles in which
we believe.

Problem 1 (the lack of time derivatives of some fields in the Lagrangian)
is faced fixing the gauge, or realizing the constraints, present in these cases,
among the dynamical variables. However, in the quantum case, these oper-
ations are not easy to understand, and, sometimes, to put into practice.

The presence of symmetries (problem 5), if they are not manifest, must
be tested (with a lot of labour) on the obtained theory, and can or cannot
be confirmed. If the symmetry falls, and one cannot renounce it, the theory,
if it is possible, should be rejected.

The ambiguities, originating from factor ordering or from the measure of
the path integral (problem 2), and from the choice of regulator (problem 4),
can be absorbed into the value of the observable parameters at the moment
of renormalization (problem 3).

Problem 3 is solved, if one wills that the theory is manifestly renormaliz-
able, and if its classical limit permits to do this. In fact, the number of such
theories is restricted. Varying few experimentally determinable parameters,
one obtains all quantum theories consistent with the given symmetries and
with the correct classical limit.

In the absence of gravity, the standard model is manifestly renormalizable.
Unfortunately (or luckily) gravity is not.

If one is able to conceive a theory that does not need renormalization,
ordering ambiguities often reappear.
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3 Beyond the standard model

In the light of the two previous sections, one puts the problems to unify
the fields that the standard model still leaves uncorrelated, and to find a
satisfactory quantum theory of gravitation.

Generalizing U(1), SU(2) and SU(3) to a symmetry that includes them
as a special case, it is possible to unify the hypercharge electroweak field,
the isospin electroweak one and the gluonic one [1] [18] [3]. They become
components of a new, more general, gauge field, of which components absent
from the standard model are also part. The leptonic fields are also unified
to quark fields. The new symmetry can be of various types (some names are
SU(5), SO(10), E6), and must be broken by a mechanism analogous to that
for the electroweak symmetries (U(1) and SU(2)). For this, one needs to add
new Higgs fields.

This picture is named “grand unification”.
The unification of all the fields, into a single entity, is more difficult, and

is named “superunification” or “theory of everything”.
Let us begin, trying to bind also gravity to the other gauge fields.
The most promising way is to make the hypothesis that it is the only

really existing gauge field, but that the space-time dimensions are in greater
number than the four known ones. The exceeding dimensions are not ob-
served, because, in the directions along them, space-time is curved to form
a subspace (“internal space”) of very small extension. Only along four di-
rections, space-time extends to infinity or nearly. As an example, think of a
two dimensional space, closed to form the surface of an undefined cylinder.
If the circumference, base of the cylinder, has a sufficiently small radius, the
cylinder appears as a line, one dimensional rather than two dimensional.

In the passage to the described configuration (“compactification” or “di-
mensional reduction”), some of the components of the gravitational field
distinguish themselves from it and form gauge fields of another type, the
symmetries of which depend on the symmetries of the internal space. If it
is a circumference, the symmetry is U(1) and can, for example, account for
electromagnetism, which has the same symmetry of the hypercharge elec-
troweak field. The components of the gravitational field, that distinguish
themselves, are those with one index corresponding to the internal space di-
rections. From the four dimensional point of view, they appear as vectors. In
the process, the components, with both indices along the internal directions,
also distinguish themselves. They appear as scalars, and can originate Higgs
fields, inflatonic ones, or other ones.

The compactification may be regarded as a symmetry breaking.
It may seem unlikely that the universe has assumed the form of such a
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long and thin filament. But, if, by random fluctuation, a small size filament
had formed at the origin of the universe, known four dimensional physical
laws would have been valid in it. Therefore it would have expanded to the
present dimensions in the way we know.

Temporarily, the only variable of the described mechanism (said “of Kaluza-
Klein”) [19] [20] [34] is the form of the internal space. It can already origi-
nate various possibilities, but, in the theory we are introducing, other entities
(“branes”, “fluxes”) are also added. Thus, the number of possible results is
enormous, and, in practice, any four dimensional theory can be obtained. As
the standard model has some properties, very unlikely at first sight, and need-
ful for the existence of life, one thinks a great number of universe-bubbles has
formed, and continues to form, by random fluctuation. Each has its apparent
physical laws, and we inhabit one of the few compatible with life (“anthropic
principle”) [21] [22] [23] [24]. The continuous bubble formation, and their
successive expansion, from regions of microscopic dimensions to enormous
ones, which appear as distinct universes, is in accordance with physical laws
and with the theory of “inflation” [25] [26], which seems confirmed by some
experiments [25].

It remains to unify leptonic and quark fields to the gravitational one.
Particles, corresponding to them, are fermions, while gauge and scalar fields
are associated to bosons. One completes the unification, introducing a sym-
metry (“supersymmetry”) [27] [28] [18], Appendix B of [36] that transforms
fermions to bosons and vice versa. When it is made local, one discovers it
forms a single symmetry with diffeomorphisms (it cannot exist by itself).
Therefore, the gravity field is a component of its gauge field. The latter has
a fermionic component too, the particles of which are said “gravitinos”. It
is a remarkable fact, that supersymmetry does not introduce a new gauge
field, which one does not know how to unify to gravity, but embraces it in a
natural way.

Local supersymmetry is called “supergravity” [18] [29] [30], and the par-
ticle associated to its gauge field, with all its components, “supergraviton”.

When one compactifies supergravity, besides the already cited bosonic
fields, fermionic fields, which can account for fermions of the standard model,
also originate owing to the presence of gravitinos.

Supersymmetry must also be broken, and there are various mechanisms
to do this, without adding any new fields.

Grand unification and superunification produce new effects at the high
(or very high) energies, while the standard model is valid at the low ones.

A seeming weakness, of this picture, is that the number of dimensions of
space-time is an arbitrary parameter of the theory (even if some arguments
would suggest 11 as the maximum number, and 11 also seems to be the
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minimum number to be able to realize the standard model [31]). Moreover,
supergravity is not manifestly renormalizable too.

To face the problem of renormalizability, we observe that a point object,
charged in respect of a certain field, produces, around itself, a configuration
of the field, which is rapidly reduced as one goes away from the charge, while,
approaching it, it grows, to usually create a singularity in correspondence of
the charge itself. In the case of gravity, such configuration is a black hole. It
exists even if there is no material charge (mass) to create it, provided the field
singularity is present. Moreover, it has all the properties of a massive body:
it attracts the other bodies by a force corresponding to the mass associated
to its field, and moves by uniform straight motion until it is not attracted
by other masses in its turn. Elementary particles (quanta of fields) are point
objects. It then appears, that, if they have mass, they can be regarded as
black holes.

Besides field configurations, corresponding to point objects, there also
exist configurations corresponding to extended objects: one dimensional, that
is filaments, two dimensional, that is surfaces, etc.. As a two dimensional
object can be called “membrane”, these entities are said “branes”, or “p-
branes”, where p is the number of dimensions of the object. Thus, a point is
a 0-brane, a filament (“string”) is a 1-brane, a membrane is a 2-brane, etc..
p can assume any value minor or equal to the dimensions of space.

The centre of mass of a brane will also move by uniform straight motion,
until interactions do not intervene, and, if it is small enough to appear point-
like, it can, in its turn, be regarded as a particle. While the only degree of
freedom of a point is its position, an extended object can change form. On
the ground of it, and of the relative velocities of its parts, it can then present
itself in different states, which will behave as different particles.

Supergravity also foresees solutions, that describe branes of the various
dimensions. It is then possible that the supergraviton is to be looked for
among the states of a brane of these.

We have said that the infinities, which are to be renormalized, originate
from integrals, that diverge in the region of the quantities of motion tending
to infinity, that is of the wave lengths tending to zero. If particles are, in
reality, extended objects, their characteristic length can provide us with a
lower bound, that is a cut-off, for such wave lengths. In fact, the particle,
distributed, so to say, over the characteristic length (ls), will feel all the
effects mediated over such length. The fields, of wave length much less than
ls, will oscillate very rapidly, cancelling themselves in the mean. Then, in
reality, the theory might be “finite”, that is devoid of divergences.

One then puts the problem to study the various branes, in order to de-
termine their states and their interactions, and to check if it is possible to
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recover the supergraviton, and if the theory is really finite.
The first case it suits to engage in is that of the string, because it is much

simpler, to study, than the branes with a major number of dimensions.
The branes of supergravity can be of a particular type, said “1

2
BPS” [32]

[33], which has special properties of symmetry and stability.
Choosing the string among all the branes, and choosing, among strings,

the 1
2

BPS ones, one discovers the following facts:

1. The supergraviton is part of the spectrum of states of the string.

2. So far as one has been able to make computations, the theory does not
exhibit divergences.

3. The theory is consistent only in a space-time with 10 dimensions.

It then seems that the theory of 1
2

BPS strings [34] . . . [39] solves whether the
problem of the appearing non-renormalizability of supergravity, or the one
of the arbitrariness in the choice of the number of dimensions of space-time.
It must not discourage the fact that, 10 being less than 11, the theory seems
insufficient to contain the standard model. In fact, string theory has new
elements in respect of standard supergravity.

One arbitrariness seems to remain, in the fact, that at least 5 different
string theories in 10 dimensions, corresponding to as many, different, super-
gravities, can be formulated. But, according to certain arguments, they all
would be different descriptions of one single theory.

The number of 1
2

BPS branes is contained. There are attempts to study
such branes [40] [41], which seem to indicate, that, besides strings in 10
dimensions, only the membrane in 11 dimensions possesses supergravitons in
its spectrum. According to the already cited arguments, the membrane in 11
dimensions also belongs to another, different, description of the same string
theory.

A complete analysis would also require to study non-1
2

BPS branes and
space-times with a number of time dimensions different from 1.

4 Cautions

The study of the string is done, applying the methods of quantum field theory
to the Lagrangian describing its motion.

I do not intend to dissuade the reader from studying this subject, but I
warn him that the difficulties listed in section 2 (together with some others)
make, to prove the consensually accepted results are right, all but simple.
I have even doubted that known principles are sufficient to do this, and,

10



at present, I prefer to be content with the possibility to compute transition
amplitudes, at the lowest perturbative order, in the (perhaps 11 dimensional)
supergravity. This corresponds to processes with an energy that is not too
elevated, and it is already a notable goal, in the waiting that, in line of
thought, experiments fix the other infinite number of parameters necessary
to complete the theory. In reality, this will, probably, never happen, given
the very high energies that are needed.

It is just to remember, that, besides string theory, there exist other ap-
proaches, which are also non-free from difficulties, to quantization of gravity.
Among them, “loop” quantum gravity [42] and “precanonical” quantization
[43] [44] [45] are those that are known to me.

References

[1] G. Börner, The Early Universe; Facts and Fiction, Springer-Verlag
(1988)

[2] Enciclopedia della Fisica, edited by R. Fieschi, ISEDI (1976); vol. II,
sezione 12: Particelle elementari, Giuseppe Marchesini, Sergio Ratti,
Domenico Scannicchio.

[3] A. Garrett Lisi, An Exceptionally Simple Theory of Everything (2007),
arXiv:0711.0770v1 [hep-th]

[4] Enciclopedia della Fisica, edited by R. Fieschi, ISEDI (1976); vol. I,
sezione 8: Meccanica quantistica, Fiorenzo Duimio.

[5] F. Mandl and G. Shaw, QUANTUM FIELD THEORY, John Wiley &
Sons (1984).

[6] V. Parameswaran Nair, Quantum Field Theory; A Modern Perspective,
Springer (2005).

[7] Enciclopedia delle Scienze Fisiche, Istituto della Enciclopedia italiana
“G. Treccani” (Roma) (1995): gauge, teorie di, Massimo Testa.

[8] David Tong, Quantum Field Theory (2006 and 2007),
http://www.damtp.cam.ac.uk/user/tong/qft.html

[9] Michael Luke, PHY2403F Lecture Notes (2011),
http://www.physics.utoronto.ca/∼luke/PHY2403/References.html

11



[10] Michael Luke, PHY 2404S Lecture Notes (2003),
http://www.physics.utoronto.ca/∼luke/PHY2403/References.html

[11] P. J. Mulders, Quntum Field Theory (2011),
http://www.nat.vu.nl/∼mulders/QFT-0.pdf

[12] Bryce S. DeWitt, Quantum Theory of Gravity. I. The Canonical Theory,
Physical Review 160 (1967), pages 1113-1148.

[13] Bryce S. DeWitt, Quantum Theory of Gravity. II. The Manifestly Co-
variant Theory, Physical Review 162 (1967), pages 1195-1239.

[14] Bryce S. DeWitt, Quantum Theory of Gravity. III. Applications of the
Covariant Theory, Physical Review 162 (1967), pages 1239-1256.

[15] J. W. van Holten, Aspects of BRST Quantization (2002),
arXiv:hep-th/0201124v1

[16] Paolo Fabbri, UN APPROCCIO MANIFESTAMENTE COVARIANTE
ALLA TEORIA QUANTISTICA DEI CAMPI (2016),
http://pfabbri.interfree.it/covar.pdf
This article contains grave errors, but it can be useful for an
introduction to quantum field theory.
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